Agent Based Cloud Service Composition for Information Retrieval Purpose using IR-CNP

Yu Mon Zaw
Ph.D Scholar, UTYCC, Pyin Oo Lwin, Myanmar, E-mail: mayumonzaw@gmail.com.

Abstract: Information Retrieval (IR) Systems are important key players for every Internet user and there are many Information Retrieving frameworks and algorithms which are currently using or under development. As the technology trend is always changing and current industrial and business world is willing to emphasize on not only providing knowledge but also supporting service, Cloud Computing and Web Services become popular. Cloud Computing is Internet based system development in which large scalable computing resources are provided “as a service” over the Internet to users and has attracted more and more attention from industry and research community. Web Service plays important role in Service Oriented Computing (SOC) in World-Wide-Web and Cloud environment. Developing a Cloud Wide Information Retrieval System using Web Services can fill one blank of Cloud Environment. In this case, retrieving desired specific information from Web Services on Cloud Environment cannot be completed by single Web Service. So, there should be a way to build an Information Retrieval System based on a set of related Web Services in order to fulfill users' requests and provide desired services. To compose Web Services, Multi-Agent System can give great help. Agent systems are self-contained software programs embodying domain knowledge and having ability to act as a specific degree of independence to carry out actions needed to accomplish desired goals. Therefore, this paper mainly focuses on building a Web Services Based IR Multi-Agent System framework and Agent Processing Algorithm which will be running on a Private Cloud Environment. We propose Contract Net Protocol for Information Retrieval Purpose (IR-CNP) in order to perform Web Services Composition. The implementation and testing of this system utilizes the real datasets of clinics in the Yangon area.

Keywords: IR-CNP; Service Oriented Computing; Cloud Computing; Web Service Composition; Multi-Agent System.

1. INTRODUCTION

Cloud computing systems provide large-scale infrastructures for high-performance computing that are “elastic” since they are able to adapt to user and application needs.[1,7] Clouds are used through a service-oriented interface that implements the “as-a-service” paradigm to offer Cloud services on demand. At the same time, multi-agent systems (MAS) represent another distributed computing paradigm based on multiple interacting agents that are capable of intelligent behavior. Multi-agent systems are often used to solve problems by using a decentralized approach where several agents contribute to the solution by cooperating one another. One key feature of software agents is the intelligence that can be embodied into them according to some collective artificial intelligence approach that needs cooperation among several agents that can run on a parallel or distributed computer to achieve the needed high performance for solving large complex problems keeping execution time low. When Clouds and Service Oriented Computing (SOC) are popular, Web Service technology becomes essential and it supports “as-a-Service” nature for Cloud to fulfill users' desires. Web Services technology is based on the interoperation of many different software applications running on a variety of geographically dispersed systems in a complex, multi domain environment via the Internet [4].

The definition of W3C (working Group) states, "A Web service is a software application identified by a URI, whose interfaces and bindings are capable of being defined, described and discovered as XML artefacts. A Web service supports direct interactions with other software agents using XML based messages exchanged via internet-based protocols." Nonetheless, Web services are closely related to the agent programming paradigm. The definition of the Web services architecture states: “A Web service is viewed as an abstract notion that must be implemented by a concrete agent. The agent is a concrete entity (a piece of software) that sends and receives messages, while the service is the set of functionality that is provided.” Typical agent architectures have many of the same features as Web services. Agent architectures provide yellow- and white-pages directories, where agents advertise their distinct functionalities and other agents search to locate the agents so they can request those functionalities. There are some advantages of Agents Computing over Web Service technology. A Web Service knows only about itself, but not about its users, clients, or customers. Agents are often self-aware at a meta-level, and
through learning and model building gain awareness of other agents and their capabilities as interactions among the agents occur. Without such awareness, a Web Service could not capitalize on new capabilities in its environment or customize its service to a client, such as by providing improved services to repeat customers. Agents are naturally communicative, whereas Web Services are passive until made invocation.

A Web service, as currently defined and used, is not autonomous. Autonomy is a characteristic of agents, and it is also a characteristic of many envisioned Internet-based applications. Among agents, autonomy generally refers to social autonomy, where an agent is aware of its colleagues and is sociable, but nevertheless exercises its independence in certain circumstances. Agents are cooperative, and by forming teams and coalitions can provide higher-level and more comprehensive services. Current standards for Web services do not provide for composing functionalities. According to the above facts, Multi-Agent system can give a good hand for Web Services to fill their blanks. Therefore, for the Cloud-wide Information Retrieval system based on Web Services, it is sure that not a single Web Service can fulfill the user needs. To get the complete and desired information results, numerous related Web Services should be cooperated. By compositing related Web Services, we can get new form of information retrieval system for Cloud Based system. In this case, multi-agents system can give a great help to make data retrieving more intelligent, effective and time saving. So, not only to make composition of Cloud Services but also to serve as an intelligent information retrieval system, we can make a combination of Cloud Computing, Agent technology and Web Services.

II. APPLYING CONTRACT NET PROTOCOL FOR INFORMATION RETRIEVAL PURPOSE (IR-CNP)

The contract net protocol [8] has been developed to specify problem-solving communication and control for nodes in a distributed problem solver. Task distribution is affected by a negotiation process, a discussion carried on between nodes with tasks to be executed and nodes that may be able to execute those tasks. Contract net protocol (CNP) is mainly used in Agent-based Systems which intend to apply in commercial and business area. CNP can also be applied in Web Service Composition and Sub-contracting is also needed for commercial service composition. In our system, we use CNP to train Agents for service composition not for business but for Information Retrieval purpose. So, sub contracting is not needed. But Data composition is essential. It can be called Multi-Contracting because more than one contractor will be participated in service composition and they perform their data retrieving duties respectively. We named it as IR-CNP (Contract Net Protocol for Information Retrieval Purpose). Like CNP, IR-CNP is a network of loosely coupled asynchronous nodes. Each node contains a number of distinct KS's (Knowledge Sources). However, unlike CNP, nodes (agents) of IR-CNP are not fully interconnected.

The data retrievers (i.e., contractors) live independently and have no interconnection between them. They only have to contact with the main task distributor (i.e., manager) to help it in data retrieving purpose. The main distributor sends a call-for-proposals to resolve the user’s request to n data retrievers. In turn, these may reply with a proposal wrapped with retrieved datasets if they accomplish the user’s request successfully otherwise they may refuse. The distributor evaluates the received proposals and sends accept-proposal messages to all the selected data retrievers to make contracts. Task distribution and service composition are performed in six stages:

- Recognition: An agent recognizes it has a problem that it wants help with. The agent has a goal, and either realizes it cannot achieve the goal in isolation (does not have the capability to fulfill the goal).
- Announcement: The agent with the task sends out an announcement of the task which includes a specification of the task to be achieved. The specification must encode a description of the task itself, any constraints, and meta-task information.
- Selection: The agent that takes the role of information searcher selects a collection of Agents who have the ability to solve the problem.
- Distribution: The main distributor sends out the task to the selection of Agents that inside the contract net to make contract.
- Retrieving: Agents that receive the task decide themselves whether they can solve the task or not by own knowledge. If it is possible, then they do data retrieving according to the task they received from main distrubutor agent. They then send back the result respectively.
- Composition: Main distributor Agent must perform data combing using own knowledge. It composites all the searching results received from other agents and produces the final result dataset.

III. PROPOSED SYSTEM ARCHITECTURE

We propose a framework for Web Services Based Information Retrieval Multi-Agent System for Cloud Computing Environment. For Service composition and communication, agents in the system adopt IR-CNP protocol. In the propose system, Web Services orchestrated Agents (WS Agents) will act as data retrievers (i.e., contractors) and they have to handle data resided distributed cloud nodes. The middle agent, Information Agent, will take the role of main task distruber (i.e., manager) of user request (problem) and will do combining (compositing) returned datasets of WS Agents. The very first initiator agent will be Gateway Agent. All Agents in the system will play the initiators and participants alternatively. The proposed system framework is intended to apply in Medical field. We have already assumed that a private Medical Cloud Environment was been founded. In that environment, a number of hospitals, clinics and health care services are hosted and are providing Web Services. Each Web Service of a specific hospital offers specialists (doctors) information worked at that hospital by numerous Web Methods. By using our Medical IR multi-agent System (Fig.1), users (patients) can easily search the desired information by day (Monday, Tuesday,...), by time (1pm-
Agent Based Cloud Service Composition for Information Retrieval Purpose using IR-CNP

4pm,...), by doctor’s name (Prof: Dr. Nay Win,...), by specific clinic (Asia Royal, SSC,...) and by disease type (Liver, Lung, OG,...).

1. There Are Six Main Components

A. Gateway Agent

Gateway Agent is the connection point between proposed Information Retrieval Multi-Agent System and JSP Servlet; in other words, it is the gate way of JADE Agent Platform to the Cloud environment.

B. Interface Agent

Interface Agent takes the duty of accepting queries from end users to search required information from distributed cloud nodes and showing back the queries result. The behaviors of Interface Agent are to receive queries from end users, prepare the queries into a format match for Information Agent’s working style, pass the well formatted data to Information Agent and to show back the queries results.

C. Information Agent

Information Agent performs three main service composition functions: service discovery, service selection and service combination. It searches available Web Service Agents, makes selection Web Service Agents, distributes user input query to a set of Web Service Agents depending on conditions and then combines the returned result of Web Service Agents and sends the final result to Interface Agent.

D. WS Agents

There are a set of Web Service Agents (WS Agents) which invoke specific Web Service associated with them. One WS Agent orchestrates with one Web Service. In that case, one Web Service may contain more than one web methods. The duty of WS Agents is to make the best choice in selecting the web method according to the data parameters sent by Information Agent. They will send back a message to Information Agent whether they get the desired data or not.

E. WS Repository

WS Repository contains a number of Web Services and Web Service Description files (WSDLs) published by various web applications hosted on the cloud nodes. In our system, to make comfortable for WS Agents in sending message and carrying data, we generate each WSDL into a set of client classes and so WS Agents can handle the retrieved results in object and can carry inside the messages.

F. Cloud Nodes

There are four cloud nodes in the same cluster. Several web application systems from Cloud Nodes support services for Information Searching and Retrieving purpose. One Node represents one hospital. Each node contains a web application (dynamic web projects) for each hospital which desires to coordinate with our Medical Information Retrieval Multi-agent System. They support Web Service with many web methods. They possess databases with different schemas. Each web method contains SQL statement to access the database according to the received parameter values. We use MySQL database for data storage.

IV. PROPOSED ALGORITHM FOR WEB SERVICES BASED IR MULTI-AGENT SYSTEM

- Request is defined as Req.
- Refined Request is defined as RefineReq.
- Final Result is defined as FinResult.
- The Returned Result from each Web Service is defined as ResWS.
- WS is the set of Web Services published in WSDL Repository.
- WS1, WS2,..., WSn ∈ WS
- AG is the set of all agents in the System.
- InterfaceAG, InfoAG, WSAG1, WSAG2,..., WSAGn ∈ AG
- Interface Agent is defined as IfAG.
- Information Agent is defined as InfoAG.
- Web Service Agent is defined as WSAG.

Begin

FinResult ← NULL.
SelectedWSAG ← NULL.
User sends Req to IfAG.
RefineReq ← Req refined by IfAG.
IfAG sends RefineReq to InfoAG.
SelectedWSAG ← InfoAG determines which WSAGs to be called.
While not receiving the FinResult from InfoAG
InfoAG sends RefineReq to WSAG1, WSAG2, ..., WSAGn ∈ SelectedWSAG.
For All WSAG1, WSAG2, ..., WSAGn...
WSAGi determine which web method of WSi to invoke according to the received RefineReq parameters.

\begin{verbatim}
If WSAGi can solve RefineReq
 It will return ResWSi to InfoAG.
Else
 Return NULL.
End If
\end{verbatim}

End For
End While
End.

V. IMPLEMENTATION AND TESTING

We implemented this proposed system based on J2EE and JADE platforms. We used apache tomcat server, axis for web development and MySQL database. The system has run on 5 machines and host OS are Ubuntu 12.04 LTS because of its private cloud building facilities. One machine is for main MAAS cloud server and others are represented as nodes in the same cluster.

Fig. 2. Cloud Main Page.

Fig.3. Cloud Nodes Status and Descriptions.

Fig.2 represents the MAAS (Metal-As-A-Service) main cloud server api opened by browser. There are total of 4 nodes in this MAAS. Each cloud node status, FQDN and MAC are described in Fig.3. The Agents running platform in the Proposed IR MAS System is as shown in Fig.4. In the Main-Container, three main agents, RMA, AMS and DF, are active as soon as the Agent platform is started. In the Container-1, we can see six users’ created agents are activated. Container-2 becomes activated as soon as the Gateway Agent is started due to invoking the IR MAS system web page via web browser.

![Fig.4. Agents running platform in Proposed IR-MAS System.](image)

Fig.4. Agents running platform in Proposed IR-MAS System.

Fig.5. Search Page.

Fig.5 describes the Search Page of our Medical IR Multi-Agent System. There are total of seven fields to select according to user’s desire. Users can search specialists’ schedule based on their preferences by either selecting the field(s) or clicking search button without selecting (i.e. search all). Users’ selections will enter into the system as parameter(s) after pressing search button.

![Fig.5. Search Page.](image)

Fig.5. Search Page.

Fig.6. Selecting Cardiologists to search schedule by specialized field.

Fig.6. Selecting Cardiologists to search schedule by specialized field.
If the user wants to see the schedules of Cardiologists, he or she has to select “Cardiologists” in specialized field drop down list. Example for searching according to doctors’ specialized field is shown in Fig.6.

<table>
<thead>
<tr>
<th>Doctor Name</th>
<th>Rank</th>
<th>Specialized Field</th>
<th>Hospital</th>
<th>Day</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Ang Kyaw Zaw</td>
<td>Professor</td>
<td>Cardiologist</td>
<td>Asia Royal</td>
<td>Tuesday</td>
<td>09:00</td>
<td>12:00</td>
</tr>
<tr>
<td>Prof. Dr. Ang Kyaw Zaw</td>
<td>Professor</td>
<td>Cardiologist</td>
<td>Asia Royal</td>
<td>Saturday</td>
<td>08:00</td>
<td>12:00</td>
</tr>
<tr>
<td>Prof. Dr. Chin Lay Yan</td>
<td>Professor</td>
<td>Cardiologist</td>
<td>Asia Royal</td>
<td>Thursday</td>
<td>09:00</td>
<td>12:00</td>
</tr>
<tr>
<td>Prof. Dr. Htan Hla San</td>
<td>Professor</td>
<td>Cardiologist</td>
<td>Asia Royal</td>
<td>Monday</td>
<td>08:30</td>
<td>15:00</td>
</tr>
<tr>
<td>Prof. Dr. Htan Hla San</td>
<td>Professor</td>
<td>Cardiologist</td>
<td>Asia Royal</td>
<td>Saturday</td>
<td>08:00</td>
<td>12:00</td>
</tr>
</tbody>
</table>

Fig.7. Searching Result for Cardiology specialization field.

Searching results are shown in a table on the browser. Maximum display of the page is 10 records and Next button will lead the user to see another records. If the user wants to look back, the “Previous” button will help as shown in Fig.7.

VI. PERFORMANCE EVALUATION

In the proposed Medical IR Multi-Agent system, there are four main agent types: Interface Agent, Information Agent and Web Service Agents as shown in Fig.8. The number of Web Service Agents depends on the number of Web Services (WSs) they must handle in the system. So, the more WSs exist, the more WSAgents the system require and the more complex the system will be. Therefore, more time will be consuming. But according to our testing, the processing time difference between increasing WSAgents usage and increasing retrieving data size (datasets) is quite small and is acceptable.

Fig.8. Comparison of average processing time with different datasets on increasing WSAgents.

VII. CONCLUSION

Agent Based Cloud Service Composition for Information Retrieval Purpose using IR-CNP is proposed. Efficiently composed cloud Web Services using multi-agents features can give new form for cloud wide information retrieval systems. The proposed system will become an intelligent way for searching or retrieving information from Cloud environment. By implementing the propose system, it can give a good hand for the public to get the desired specialists’ schedule completely and perfectly at one sitting and can make the right choice with their current situations. Moreover, this framework can be applied in other domain area efficiently.

VIII. REFERENCES