Quantization Noise Suppression in Fractional PLLs

V. Venkata Siva Mouli1, J.Ravi2

1PG Scholar, Dept of ECE, Sri Krishnadevaraya Engineering College, Gooty, AP-INDIA, E-mail: vaddesivamouli@gmail.com.
2Asst Prof, Dept of ECE, Sri Krishnadevaraya Engineering College, Gooty, AP-INDIA, E-mail: skdecehod@gmail.com.

Abstract: A novel programmable frequency divider for quantization noise (QN) suppression in fractional-N phase-locked loops (PLLs) is presented in this paper. The proposed phase switching multi-modulus frequency divider (PS-MMFD) utilizes a novel glitch-free phase switching (PS) divide-by-0.5/1/1.5/2 cell to reduce the frequency division step to 0.5 and its QN induced by \(\Delta \Sigma \) modulation is thus suppressed by additional 6 dB. Compared with other frequency dividers used for QN suppression, the proposed glitch-free PS-MMFD is more robust, can operate at higher input frequency and consumes less power. Detailed analysis and implementation of the proposed glitch-free PS-MMFD is demonstrated, followed by experimental results from a fully integrated \(\Delta \Sigma \) fractional-N PLL utilizing the proposed QN suppression technique. Implemented in a 0.18 \(\mu \)m CMOS process, the proposed glitch-free PS-MMFD occupies an area of 0.38 mm \(\times \) 0.25 mm and consumes 5 mA from a 1.8-V supply at an input frequency of 2 GHz. Measurement results also demonstrate the additional 6-dB QN suppression by the proposed technique.

Keywords: Phase-Locked Loop (PLL), Quantization Noise (QN) and Phase Switching Multi-Modulus Frequency Divider (PS-MMFD).

1. INTRODUCTION

The \(\Delta \Sigma \) fractional- phase-locked loop (PLL) is widely used in wireless communication systems, allowing tradeoffs among PLL design constrains for phase noise, settling time, frequency resolution, and reference spur. The \(\Delta \Sigma \) modulator generates a pseudo-random bit sequence to dither the instantaneous division ratio and its time-average value equals to the required fractional division ratio. However, since the internal step of the frequency divider still remains discrete, the quantization error, i.e., the deviation from the desired fractional division ratio, introduces the quantization noise (QN)(fig.1) and deteriorates the overall phase noise performance especially for wideband PLLs. Several researchers used digital-to-analog converter (DAC) controlled current branches to compensate for the QN. The performance is mainly limited by the mismatch from DAC digital value to its analog counterpart. Many recent publications have been progressively improving the mismatch. Different kinds of adaptive algorithms are adopted, and the circuit implementations become dramatically complex. The groups of phase frequency detector (PFD) and charge pump (CP) combinations are controlled in such a way that the QN is equivalently filtered out by a digital finite-impulse response (FIR) filter. Another noise filtering technique based on an integer- PLL in a feedback path suppresses out-of-band quantization noise of a high-order \(\Delta \Sigma \) modulator. Nonetheless, both improvements of output phase noise are obtained at the cost of circuit complexity. Hybrid PFD/DAC structure was utilized to manipulate the PLL feedback signal and perform the equivalent QN compensation. However, such technique demands extremely high accuracy in timing control.

The most straightforward way to suppress the QN is to decrease the quantization step that is the internal division step in \(\Delta \Sigma \) fractional- PLLs. There are several publications elaborating on this idea. The QN is suppressed by 6 dB if reducing the division step by half. The key principle is to trigger the frequency divider on either rising or falling edges of the input signal to perform the double edge triggering. However, the robustness of the frequency divider cannot be guaranteed at high input frequencies because the operating frequency is actually twice of the input signal frequency. Our simulation results show the maximum input signal frequency of the divider introduced is limited to about 3.0 GHz in a 0.18 m CMOS process. In addition, the circuit stage performing the double edge triggering consumes more than half of the total power of the frequency divider. The above shortcomings of the double edge triggering technique restrict its use in the low-power high-frequency applications. In this paper, a novel circuit technique, glitch-free phase switching multi-modulus frequency divider (PS-MMFD) to suppress the QN in a \(\Delta \Sigma \) fractional-N PLL, is proposed. The division step of the PS-MMFD is 0.5, and its...
QN induced by $\Delta \Sigma$ modulation is thus suppressed by additional 6 dB. In addition, the PS-MMFD could operate at a higher frequency since its internal operating frequency is not doubled. Furthermore, a wide continuous frequency division range is achieved in the proposed PS-MMFD by using division ratio extension logic. A $\Delta \Sigma$ fractional-PLL utilizing the proposed glitch-free PS-MMFD is also designed and implemented in a 0.18 m CMOS process to demonstrate its performance.

The input and output sets involved in quantization can be defined in a rather general way. For example, vector quantization is the application of quantization to multi-dimensional (vector-valued) input data. There are two substantially different classes of applications where quantization is used: The first type, which may simply be called rounding quantization, is the one employed for many applications, to enable the use of a simple approximate representation for some quantity that is to be measured and used in other calculations. This category includes the simple rounding approximations used in everyday arithmetic. This category also includes analog-to-digital conversion of a signal for a digital signal processing system (e.g., using a sound card of a personal computer to capture an audio signal) and the calculations performed within most digital filtering processes. Here the purpose is primarily to retain as much signal fidelity as possible while eliminating unnecessary precision and keeping the dynamic range of the signal within practical limits (to avoid signal clipping or arithmetic overflow). In such uses, substantial loss of signal fidelity is often unacceptable, and the design often centers around managing the approximation error to ensure that very little distortion is introduced.

The second type, which can be called rate–distortion optimized quantization, is encountered in source coding for "lossy" data compression algorithms, where the purpose is to manage distortion within the limits of the bit rate supported by a communication channel or storage medium. In this second setting, the amount of introduced distortion may be managed carefully by sophisticated techniques, and introducing some significant amount of distortion may be unavoidable. A quantize designed for this purpose may be quite different and more elaborate in design than an ordinary rounding operation. It is in this domain that substantial rate–distortion theory analysis is likely to be applied. However, the same concepts actually apply in both use cases. The analysis of quantization involves studying the amount of data (typically measured in digits or bits or bit rate) that is used to represent the output of the quantize, and studying the loss of precision that is introduced by the quantization process (which is referred to as the distortion). The general field of such study of rate and distortion is known as rate–distortion theory.

B. Scalar quantization

The most common type of quantization is known as scalar quantization. Scalar quantization, typically denoted as $y = Q(x)$, is the process of using a quantization function $Q(x)$ to map a scalar (one-dimensional) input
value x to a scalar output value y. Scalar quantization can be as simple and intuitive as rounding high-precision numbers to the nearest integer, or to the nearest multiple of some other unit of precision (such as rounding a large monetary amount to the nearest thousand dollars). Scalar quantization of continuous-valued input data that is performed by an electronic sensor is referred to as analog-to-digital conversion. Analog-to-digital conversion often also involves sampling the signal periodically in time (e.g., at 44.1 kHz for CD-quality audio signals).

C. Rounding example

As an example, rounding a real number x to the nearest integer value forms a very basic type of quantize a uniform one. A typical (mid-tread) uniform quantize with a quantization step size equal to some value Δ can be expressed as

$$Q(x) = \text{sgn}(x) \cdot \left\lfloor \frac{x}{\Delta} + \frac{1}{2} \right\rfloor. \quad (1)$$

Where the function $\text{sgn}(\cdot)$ is the sign function (also known as the signum function). For simple rounding to the nearest integer, the step size Δ is equal to 1. With $\Delta = 1$ or with Δ equal to any other integer value, this quantize has real-valued inputs and integer-valued outputs, although this property is not a necessity a quantize may also have an integer input domain and may also have non-integer output values. The essential property of a quantize is that it has a countable set of possible output values that has fewer members than the set of possible input values. The members of the set of output values may have integer, rational, or real values (or even other possible values as well, in general – such as vector values or complex numbers).

When the quantization step size is small (relative to the variation in the signal being measured), it is relatively simple to show that the mean squared error produced by such a rounding operation will be approximately $\Delta^2/12$. Because the set of possible output values of a quantize is countable, any quantize can be decomposed into two distinct stages, which can be referred to as the classification stage (or forward quantization stage) and the reconstruction stage (or inverse quantization stage), where the classification stage maps the input value to an integer quantization index k and the reconstruction stage maps the index k to the reconstruction value y_k that is the output approximation of the input value. For the example uniform quantizer described above, the forward quantization stage can be expressed as

$$k = \text{sgn}(x) \cdot \left\lfloor \frac{|x|}{\Delta} + \frac{1}{2} \right\rfloor. \quad (2)$$

And the reconstruction stage for this example quantize is simply $y_k = k \cdot \Delta$. This decomposition is useful for the design and analysis of quantization behavior, and it illustrates how the quantized data can be communicated over a communication channel – a source encoder can perform the forward quantization stage and send the index information through a communication channel (possibly applying entropy coding techniques to the quantization indices), and a decoder can perform the reconstruction stage to produce the output approximation of the original input data. In more elaborate quantization designs, both the forward and inverse quantization stages may be substantially more complex. In general, the forward quantization stage may use any function that maps the input data to the integer space of the quantization index data, and the inverse quantization stage can conceptually (or literally) be a table look-up operation to map each quantization index to a corresponding reconstruction value. This two-stage decomposition applies equally well to vector as well as scalar quantizers.

D. Mid-riser and mid-tread uniform quantizers

Most uniform quantizers for signed input data can be classified as being of one of two types: mid-riser and mid-tread. The terminology is based on what happens in the region around the value 0, and uses the analogy of viewing the input-output function of the quantizer as a stairway. Mid-tread quantizers have a zero-valued reconstruction level (corresponding to a tread of a stairway), while mid-riser quantizers have a zero-valued classification threshold (corresponding to a riser of a stairway). The formulas for mid-tread uniform quantization are provided above. The input-output formula for a mid-riser uniform quantizer is given by:

$$Q(x) = \Delta \cdot \left\lfloor \frac{|x|}{\Delta} + \frac{1}{2} \right\rfloor. \quad (3)$$

Where the classification rule is given by

$$k = \left\lfloor \frac{x}{\Delta} \right\rfloor \quad (4)$$

And the reconstruction rule is

$$y_k = k \cdot \Delta + \frac{1}{2}. \quad (5)$$

Note that mid-riser uniform quantizers do not have a zero output value – their minimum output magnitude is half the step size. When the input data can be modeled as a random variable with a probability density function (pdf) that is smooth and symmetric around zero, mid-riser quantizers also always produce an output entropy of at least 1 bit per sample.

In contrast, mid-tread quantizers do have a zero output level, and can reach arbitrarily low bit rates per sample for input distributions that are symmetric and taper off at higher magnitudes. For some applications, having a zero output signal representation or supporting low output entropy may be a necessity. In such cases, using a mid-tread uniform quantize may be appropriate while using a mid-riser one would not be. In general, a mid-riser or mid-tread quantize may not actually be a uniform quantize – i.e., the size of the quantizer's classification intervals may not all be the same, or the spacing between its possible output values may not all be the same. The distinguishing characteristic of a mid-riser quantizer’s classification intervals may not all be the same, or the spacing between its possible output values may not all be the same. The distinguishing characteristic of a mid-riser quantizer’s classification intervals may not all be the same, or the spacing between its possible output values may not all be the same.
quantize is that it has a classification threshold value that is exactly zero, and the distinguishing characteristic of a mid-tread quantize is that it has a reconstruction value that is exactly zero. Another name for a mid-tread quantize is dead-zone quantize, and the classification region around the zero output value of such a quantize is referred to as the dead zone. The dead zone can sometimes serve the same purpose as a noise gate or squelch function.

E. The additive noise model for quantization error

A common assumption for the analysis of quantization error is that it affects a signal processing system in a similar manner to that of additive white noise – having negligible correlation with the signal and an approximately flat power spectral density. The additive noise model is commonly used for the analysis of quantization error effects in digital filtering systems, and it can be very useful in such analysis. It has been shown to be a valid model in cases of high resolution quantization (small ∆ relative to the signal strength) with smooth probability density functions. However, additive noise behavior is not always a valid assumption, and care should be taken to avoid assuming that this model always applies. In actuality, the quantization error (for quantizers defined as described here) is deterministically related to the signal rather than being independent of it, and in some cases it can even cause limit cycles to appear in digital signal processing systems. One way to ensure effective independence of the quantization error from the source signal is to perform dithered quantization (sometimes with noise shaping), which involves adding random (or pseudo-random) noise to the signal prior to quantization. This can sometimes be beneficial for such purposes as improving the subjective quality of the result; however it can increase the total quantity of error introduced by the quantization process.

F. Quantization error models

In the typical case, the original signal is much larger than one least significant bit (LSB). When this is the case, the quantization error is not significantly correlated with the signal, and has an approximately uniform distribution. In the rounding case, the quantization error has a mean of zero and the RMS value is the standard deviation of this distribution, given by \(\frac{1}{\sqrt{12}} \text{LSB} \approx 0.289 \text{LSB} \). In the truncation case the error has a non-zero mean of \(\frac{1}{2} \text{LSB} \) and the RMS value is \(\frac{1}{\sqrt{2}} \text{LSB} \).

In the eight-bit ADC example, the RMS rounding error represents 0.113% of the full signal range. At lower amplitudes the quantization error becomes dependent on the input signal, resulting in distortion. This distortion is created after the anti-aliasing filter, and if these distortions are above 1/2 the sample rate they will alias back into the band of interest. In order to make the quantization error independent of the input signal, noise with amplitude of 2 least significant bits is added to the signal. This slightly reduces signal to noise ratio, but, ideally, completely eliminates the distortion. It is known as dither.

III. QUANTIZATION NOISE MODEL

Fig. 3. Original and Quantized signal, Quantization Error

Quantization noise for a 2-bit ADC operating at infinite sample rate. The difference between the blue and red signals in the upper graph is the quantization error (fig. 3), which is “added” to the quantized signal and is the source of noise. Quantization noise is a model of quantization error introduced by quantization in the analog-to-digital conversion (ADC) in telecommunication systems and signal processing. It is a rounding error between the analog input voltage to the ADC and the output digitized value. The noise is non-linear and signal-dependent. It can be modeled in several different ways.

In an ideal analog-to-digital converter, where the quantization error is uniformly distributed between −1/2 LSB and +1/2 LSB, and the signal has a uniform distribution covering all quantization levels, the Signal-to-quantization-noise ratio (SQNR) can be calculated from

\[
SQNR = 20 \log_{10}(2^Q) \approx 6.02 \cdot Q dB \tag{6}
\]

Where \(Q \) is the number of quantization bits.

The most common test signals that fulfill this are full amplitude triangle waves and saw tooth waves. For example, a 16-bit ADC has a maximum signal-to-noise ratio of 6.02 × 16 = 96.3 dB. When the input signal is a full-amplitude sine wave the distribution of the signal is no longer uniform, and the corresponding equation is instead

\[
SQNR \approx 1.761 + 6.02 \cdot Q dB \tag{7}
\]

Here, the quantization noise is once again assumed to be uniformly distributed. When the input signal has high amplitude and a wide frequency spectrum this is the case.[12] In this case a 16-bit ADC has a maximum signal-to-noise ratio of 98.09 dB. The 1.761 difference in signal-to-noise only occurs due to the signal being a full-scale sine wave instead of a triangle/saw tooth. Quantization noise power can be derived from

\[
N = \frac{(\delta V)^2}{12} W \tag{8}
\]

Where \(\delta V \) is the voltage of the level? (Typical real-life values are worse than this theoretical minimum, due to the addition of dither to reduce the objectionable effects of
Quantization Noise Suppression in Fractional PLLs

quantization, and to imperfections of the ADC circuitry. On the other hand, specifications often use a weighted Measurements to hide the inaudible effects of noise shaping, which improves the measurement.)

For complex signals in high-resolution ADCs this is an accurate model. For low-resolution ADCs, low-level signals in high-resolution ADCs, and for simple waveforms the quantization noise is not uniformly distributed, making this model inaccurate.[13] In these cases the quantization noise distribution is strongly affected by the exact amplitude of the signal. The calculations above, however, assume a completely filled input channel. If this is not the case - if the input signal is small - the relative quantization distortion can be very large. To circumvent this issue, analog compressors and expanders can be used, but these introduce large amounts of distortion as well, especially if the compressor does not match the expander.

IV. QUANTIZATION NOISE SUPPRESSION

The QN-induced phase noise degradation at the output of the PLL can be expressed as

\[
S_{\phi, \Delta\sum}(f) = f_{\text{REF}}\cdot |H_{\Delta\sum}(e^{j\phi/\text{REF}})|^2 \cdot |T_{\text{DIV}}(e^{j\phi/\text{REF}}, ff)|^2 \cdot \frac{\Delta^2}{12}
\]

(9)

where \(f_{\text{REF}}\) is the reference frequency of the PLL; \(H_{\Delta\sum}(z)\) is the QN transfer function of \(\Delta\sum\) modulation, which depends on the structure of the \(\Delta\sum\) modulator; \(T_{\text{DIV}}(z, ff)\) is the transfer function from the divider output to the PLL output; \(\Delta\) is the step of the quantization (usually \(\Delta=1\) for integer step frequency divider); and \(S_{\phi, \Delta\sum}(f)\) is the power spectrum density of QN-induced PLL output phase noise.

The QN introduced by the deviation of instantaneous division ratio and desired fractional division ratio is high-pass filtered by the \(\Delta\sum\) modulation, while the noise transfer function from the divider output to the PLL output demonstrates low-pass characteristic. Thus, the total QN-induced phase noise degradation presents a little hump in the PLL output phase noise. As can be seen from (1), the QN-induced phase noise can be reduced by increasing or narrowing down PLL loop bandwidth. However, such improvement is usually limited by performance tradeoffs among reference noise, voltage controlled oscillator (VCO) noise, and settling time in a fractional- PLL. The only parameter in (1), which does not impact other PLL performance, is the division step of the frequency divider. If the division step, i.e., the quantization step in (1), is reduced by half, the QN-induced phase noise degradation would be improved by 4 times or 6 dB. Such 6-dB improvement benefits the total PLL output phase noise performance and is especially desirable for the UHF digital TV tuner application where the most critical analog adjacent channel interference, the phase alternating line (PAL) interference, is 1.5 MHz away from the desired channel.

A. Frequency Dividers

The frequency divider is an important building block in today’s RFIC and microwave circuits because it is an integral part of the phase-locked loop (PLL) circuit. In a typical PLL loop, the output of the voltage-controlled oscillator (VCO) is divided down by the frequency divider to a frequency the temperature-compensated crystal oscillator (TCXO) operates (typically from 10 MHz to 30 MHz). The divided signal and TCXO are fed into the phase detector for comparison. The output phase difference is used to adjust the VCO output frequency. The frequency divider is also widely used to generate a precision I/Q signal if the input signal has a 50% duty cycle, for the modern in-phase and quadrature (I/Q) modulator or demodulator. For the signal with duty cycle other than 50%, an additional divide by- 2 (fig.4) can be used to generate the 50% duty cycle. Compared with the traditional resistor and capacitor (RC) quadrature generation, the frequency divider approach is easier to implement, is lower power and offers smaller phase imbalance.
B. Basics of Phase Locked Loops (PLLs)

A PLL is a negative feedback loop in which the phase of a generated signal is forced to follow that of a reference signal. A basic modern PLL comprises a reference source, a phase frequency detector, a charge pump, a loop filter, and a Voltage Controlled Oscillator (VCO). The output of the VCO is phase-compared with the reference at the Phase Frequency Detector (PFD). The polarity of the measured phase difference is used to turn on the pump-up or pump-down current source in the charge pump. As a result, some charge is transferred to or taken away from the integrating capacitor in the loop filter. The amount of charge is proportional to the magnitude of the phase difference. This, in turn, results in an adjustment in the tuning voltage of the VCO so that its phase is retarded or advanced. The loop is designed so that the phase error is corrected.

The function of the PFD also ensures that it switches on the right current source (i.e., pump-up current or pump-down current) to speed up or slow down the VCO in case of a frequency difference between the two incoming signals to the PFD. When the loop reaches lock condition, the frequency of the generated signal is also equal to that of the reference.

The variable \(\frac{k}{M}\) is a measure of the fractionality that a fractional-N synthesizer can provide. It is usually referred to as “fractional modulus” or “fractional denominator.” The integer number \(k\) can assume any number between 0 and \(M\). The non-integer number \((N + \frac{k}{M})\) is often written as \(N.F\), where the dot denotes a decimal point, and \(N\) and \(F\) represent the integer and fractional parts of the number, respectively. Traditional fractional-N synthesis methods are based on the basic concepts of integer-N synthesis. The three most common methods – fractional divider-based, current injection-based, and \(\Delta\Sigma\) modulator-based – are described below. The last two methods are based on the concept of division ratio averaging.

D. Fractional-N Frequency Synthesis

The frequency synthesized by a fractional-N synthesizer can be a non-integer multiple of the reference, as illustrated by the following equation:

\[
f_{\text{VCO}} = \left(N + \frac{k}{M} \right) \times f_{\text{ref}}
\]

(11)

Where \(k\) and \(M\) are integers.

The variable \(M\) is a measure of the fractionality that a fractional-N synthesizer can provide. It is usually referred to as “fractional modulus” or “fractional denominator.” The integer number \(k\) can assume any number between 0 and \(M\). The non-integer number \((N + \frac{k}{M})\) is often written as \(N.F\), where the dot denotes a decimal point, and \(N\) and \(F\) represent the integer and fractional parts of the number, respectively. Traditional fractional-N synthesis methods are based on the basic concepts of integer-N synthesis. The three most common methods – fractional divider-based, current injection-based, and \(\Delta\Sigma\) modulator-based – are described below. The last two methods are based on the concept of division ratio averaging.

E. Fractional Divider-Based Fractional-N

This technique evolves from the fundamental principles of integer-N synthesis. The only difference is that the frequency divider is replaced with a fractional divider. A fractional frequency divider is no longer a simple digital counter. The period of the divider output (\(T_{\text{do}}\)) is given by the following equation:

\[
T_{\text{do}} = (N + 0.F) \times T_{\text{vco}}
\]

(12)

Where: \(0.F\) = a fractional number

\(T_{\text{vco}}\) = the period of the VCO

It’s important to mention that once \(N\) and \(0.F\) are set, the period of a fractional divider output is ideally not time varying. In other words, a rising edge occurs at the output each \(N\) and \(0.F\) VCO cycle. The timing diagram in Figure 6 illustrates the operation of a fractional divider where \(N.F\) is equal to 2.25. As with the case of an integer-N synthesizer, \(T_{\text{do}}\) is forced to follow the reference period. Therefore,

\[
T_{\text{ref}} = (N + 0.F) \times T_{\text{vco}}
\]

(13)
Quantization Noise Suppression in Fractional PLLs

or: \(f_{VCO} = (N + 0.F) \times f_{ref} \)

Where \(f_{ref} \) is the reference period.

The register is clocked by the reference. The input to the DPA is an m-bit word. The contents of the register are used to control the MUX. On every reference rising edge, the contents are incremented by the value of the input, \(x \), which is represented by an m bits word. The output of the DPA (i.e., the carry-out of the adder) is a one-bit quantization of the input. The number of bits in the accumulator (m) is related to the number of discrete packets of phase by the following equation:

\[
N_d = 2^m
\]

(14)

The output of the DPA controls the DMD. When carry-out is high, the DMD divides by \(N + 1 \) as opposed to \(N \) when carry-out is low. In the following example, the fractional division ratio, \(N + 0.F \), for a DPA input of \(x \), is equal to \(N + x/2m \). Suppose the DPA has three bits and, therefore, the delay line has eight elements. Each phase packet corresponds to 1/8 of a VCO cycle. Also, assume that the input is equal to 2, which corresponds to a 0.F of 2/8. When no carry-out occurs, the DMD divides by \(N \). Its output, however, is not immediately presented to the PFD of the PLL. Rather, it is delayed by a number of phase packets controlled or selected by the MUX. This number is equal to the content of the DPA, which is incremented by 2 every reference cycle. This means that the output is phase-shifted by a progressively increasing number of phase packets (i.e., 0, 2, 4, 6, 8) each reference cycle. As a result, the period of the DMD output is increased by 2/8 of a VCO cycle. Therefore, the effective division ratio becomes \(N + 0.25 \), which is what it should be. When the DPA content reaches 8, the content of the DPA is reset, and the output of the DMD is not delayed by the delay line. However, this coincides with a carry-out, which forces the DMD to divide by \(N + 1 \). This is equivalent to the DMD dividing by \(N \) and its output being delayed by 8 phase packets (i.e., one VCO cycle).

The design of the fractional divider dictates the fractional modulus or fractional denominator to be \(N_d \), the number of delay elements. Because all the elements in the delay line operate at the VCO speed, the added power consumption can be significant, especially when the VCO frequency and/or fractionality is high. Another drawback of this method is that the edges of the fractional divider output may be noisy as a result of jitter on the outputs of the delay elements. Jitter is present due to mismatch and phase error from the phase error-correcting action of the DLL. The edge Contamination may result in a significant increase in the phase detector noise floor.

F. Averaging Fractional-N

Another way to achieve fractional-N synthesis is through division ratio averaging. The idea is that an integer frequency divider, as opposed to a fractional divider, is used but the division ratio is dynamically switched between two or more values. Effectively, the divider divides by a non-integer number. This number is determined by the values among which the division ratio is changed and the probability of each division ratio used.

For example, if the divider divides by 100 half of the time and by 101 the other half of the time, the average division ratio is 100.5. In general, the non-integer division ratio is given by the following equation:

\[
N.F = N_1P_1 + N_2P_2 + \ldots N_jN_j
\]

(15)

Where \(N.F \) denotes the average division ratio, and \(N_i \) and \(P_i \) are the integer division ratio and the probabilities associated with them, respectively. Again, since the average divider output frequency is equal to \(f_{ref} \), the following relationship exists when the loop is in lock:

\[
f_{VCO} = N.F \times f_{ref}
\]

(16)

One way to switch the division ratio dynamically is through the use of a simple modulus controller. A modulus controller can be a simple DPA. The output of the DPA is used to control the division ratio of a DMD. The divider divides by \(N + 1 \) when there is a carry-out and by \(N \), otherwise. In this case, the fractional part of the average division ratio is equal to the input to the DPA. First, the average value of the DPA output is equal to its input, which is the way a DPA works. This average is also equal to the probability of the DPA carry-out being a 1. Knowing this probability, \(p \), the average division ratio, can be readily calculated as:

\[
N.F = N + p
\]

(17)

Where \(p \) is related to the input of the DPA by:

\[
p = \frac{x}{2^m}
\]

(18)

Note that the input of the DPA (\(x \)) is represented by an m-bit word. It can be shown that a DPA, as depicted in Figure 4, is actually a first-order \(\Delta \Sigma \) modulator. Like any \(\Delta \Sigma \) modulator, the output of a DPA exhibits quantization errors. How quantization errors result in quantization phase errors, and what to do with them, is discussed below.

In general, there are two ways to deal with quantization phase errors: cancellation by current injection or \(\Delta \Sigma \) noise shaping. These two techniques lead to two different types of averaging fractional-N synthesis, the current injection-based fractional-N and \(\Delta \Sigma \) fractional-N.

G. Quantization Phase Error

The information presented here is based on a DPA-controlled, dual-modulus divider. To facilitate the definition, imagine an ideal fractional frequency divider that divides by \(N.F \). Here, ideal means that the period of the imaginary divider output is always \(N.F \) VCO cycles, precisely. It adds no noise or jitter to its output. Quantization error in the DPA output exists because the output is an approximation of the input and is never equal to
the desired value. This is simply because the output is either 0 or 1, while the input is between 0 and 1 (excluding 0 and 1). Accordingly, the instantaneous division ratio of the DMD is never equal to the average division ratio by which the imaginary divider divides. This, in turn, gives rise to a phase difference between the actual instantaneous DMD output and the imaginary divider output. If the latter is viewed as a reference, then the former exhibits phase error with respect to the latter. This phase error is defined as quantization phase error or quantization phase noise. It is also referred to as quantization noise for simplicity.

There are two points worth mentioning. First, the imaginary divider output is phase-locked to the reference. The phase difference between the two signals is such that there is no error correction signal at the output of the charge pump. Secondly, the waveform of the actual DMD output can be viewed as the imaginary divider output with its phase being modified by the quantization phase error. With this understanding, the DPA controlled DMD can be modeled as an ideal fractional divider plus a quantization noise source.

This function can be used to derive the transfer function for the quantization phase error in the s domain (i.e., the transfer function from this phase error source to the VCO output). This function can be defined as Equation 10:

\[
\phi_{q,0}(s) = \left(\frac{(N,F \times K_{cp} \times K_{vco}) \times F(s)}{(N,F \times s) + F(s) \times (K_{cp} \times K_{vco})} \right) \times \phi_q(s)
\]

(19)

Where \(\phi_q(s)\) = output quantization noise.

\(\phi_q(s)\) = input quantization noise.

\(F(s)\)=impedance of the loop filter.

\(K_{cp}\) = charge pump gain.

\(K_{vco}\) =VCOsensitivity

These include the phase noise on the reference, noise due to the CP/PD, VCO noise, and random noise due to the divider.

V.SIMULATION RESULT

Fig. 7. simulation result of pll_tb.v
VI. CONCLUSION

In this project, a novel multi-modulus frequency divider architecture utilizing glitch-free phase switching is proposed to achieve half-stepped division ratios and thus QN suppression in fractional-PLLs. Theoretical analysis and circuit implementations with practical timing issues discussions for the proposed PS-MMFD are presented in details. The proposed PS-MMFD is unconditionally glitch-free and achieves 6-dB QN suppression thanks to its half-step division. The proposed PS-MMFD is able to operate at higher input frequency and consume less current, compared with other state-of-the-art frequency dividers (usually based on double-edge-triggering technique) used for QN suppression. An experimental fractional-PLL utilizing the proposed glitch-free PS-MMFD is designed and implemented in a 0.18-μm CMOS process. The measurement results demonstrate the expected out-of-band phase noise suppression provided by the proposed PS-MMFD. The chip area for the proposed PS-MMFD is 0.38 mm × 0.25 mm and the power consumption is 5 mA from a 1.8-V power supply when operating at an input frequency of 2 GHz.

Future scope: This thesis focuses on the design of ΣΔ fractional-N frequency synthesizers for OFDM based applications. As discussed earlier, ΣΔ fractional-N PLLs have proven to be a very good candidate for the emerging OFDM-based radios which require employment of fast switching low phase noise frequency synthesizers. In this work, the mechanisms which degrade spectral purity in ΣΔ fractional-N PLLs i.e. block noise and fractional spurs and their effect on phase noise were explored. Solutions were proposed to enhance the low phase noise, wide-bandwidth trade-off in frequency synthesis. Furthermore, the design block for low noise performance was shown.

The design of MMD for the above mentioned PLL was explained. A wideband low power prescaler was designed using the E-TSPC logic circuits which lead to low noise, low power performance design of low noise, high performance blocks for PLL were described in details. The design and implementation of a VCO with amplitude regulation was presented. The VCO was integrated in the PLL for WiMAX application presented in the design of a ΣΔ PLL for triple-band WiMAX application was presented. The Type-I PLL is immune to the nonlinearities in PFD/CP. As a result, the quantization noise folding was decreased. The design of PLL loop and PLL blocks were presented. The physical realization of the PLL in tsmc0.18 μm was shown and the simulation results were given.
An overview of frequency synthesizers in modern wireless radios is given. Specifically, the impact of phase noise on the OFDM signals was explained. The PLL model as a negative feedback was analyzed and the different PLL architectures and their advantages and limitations were presented. The phase noise in PLL was investigated. The contribution of different noise sources in PLL was analyzed through using an AC small signal model. The effect of various loop parameters on phase noise and integrated phase noise was investigated and it was shown how to optimize these parameters in order to achieve a minimal phase noise. Furthermore, the fractional spur generation and cancellation techniques were presented. The impact of loop nonlinearities on folding of the quantization noise and increase of the close-in noise of PLL is shown.

VII. REFERENCES

Author Profiles:

V. Venkata Siva Mouli, completed M.Tech in VLSI stream. He did his graduation in 2011 in electronics and communications stream. Currently he is doing research on “Quantization Noise Suppression in Fractional PLLs”. E-mail: vaddesivamouli@gmail.com.

J. Ravi M.Tech., MISTE is working as Associate professor, Department of ECE in SKD College Goothy. He have 9 (nine) years of experience in teaching field. He completed graduation in electronics and communications and currently doing research in VLSI stream. He published so many international journals, E-mail: skdecehod@gmail.com.